Cookies helfen uns bei der Bereitstellung von Open Source Ecology (OSE) Germany - Entwicklungsplattform. Durch die Nutzung von Open Source Ecology (OSE) Germany - Entwicklungsplattform erklärst du dich damit einverstanden, dass wir Cookies speichern.

Zn/O-Brennstoffzelle - Open Source Ecology - Germany

Aus Open Source Ecology (OSE) Germany - Entwicklungsplattform
Wechseln zu:Navigation, Suche

2951.1.png2951.2.jpg2951.3.jpg2951.4.jpg2951.5.jpg

Zn/O-Brennstoffzelle - Open Source Ecology - Germany

Basic Data

Category: Projects

URL (first publication): https://wiki.opensourceecology.de/Zn/O-Brennstoffzelle


















no

no no



Other




Design files are in original format: No

Free redistribution is allowed licence: No







Description

Cookies helfen uns bei der Bereitstellung von Open Source Ecology - Germany. Durch die Nutzung von Open Source Ecology - Germany erklärst du dich damit einverstanden, dass wir Cookies speichern.


Zn/O-Brennstoffzelle

Aus Open Source Ecology - Germany

Inhaltsverzeichnis



Zinc-Air Cell plus ZnO-Recycler ("ZAC+")



Einführung

Bei diesem Projekt geht es um die Entwicklung einer möglichst langfristigen Speicherlösung für elektrische Energie. Das Projekt besteht aus zwei Elementen:

1. Zink-Luft Brennstoffzelle: Die Zelle besteht aus einer Kohlenstoff-Kathode, welche den Luftsauerstoff weiterleitet und einer Zink-Anode. Als Elektrolyt wird in Wasser gelöstes Kaliumhydroxid (Kalilauge) verwendet. Das Zink wird hier quasi als Treibstoff kalt "verbrannt", d.h. oxidiert und es entsteht Zinkoxid (ZnO). Das theoretische Maximum der liegt bei rund 1,3KWh/Kg.

2. : Um den verbrauchten Treibstoff wieder zu regenerieren bzw. wiederaufzuladen muss das Zinkoxid unter Aufwendung von Energie wieder zu Zink reduziert werden. Dies kann auf verschiedenem Wege geschehen, z.B. bei hohen Temperaturen (>1200°C) unter Kohlenstoffzufuhr, oder einfacher, in einem galvanischen Prozess, was der hier angestrebte Lösungsansatz wäre.

Das ZAC+ bietet insbesondere im Vergleich mit allen anderen Arten von Akku-Systemen (Blei-Säure, Lithium, usw) eine Vielzahl von Vorteilen, u.a. folgende:

  • Unbegrenzte Zyklenanzahl
  • Unbegrenzte Lagerfähigkeit
  • Unempfindlich gegen Tiefentladung und Überladung
  • Simple und überall und günstig erhältliche Komponenten
  • Komponenten sind absolut unschädlich für die Umwelt
  • Mit Abstand die höchste Energiedichte

Einordnung; ähnliche Technologien

ZAC+ stellt als OSEG-Projekt eine interessante Alternative zu dem in der Top50-Liste von OSE-US aufgeführten Nickel-Eisen-Akku ("Edison-Batterie") dar. Im Gegensatz zu diesem ist aber die Technologie klarer und überschaubarer (insbesondere was die Herstellung betrifft) und die Komponenten sind einfacher zu beschaffen und vergleichsweise ungiftig und damit besser handhabbar.

Das Prinzip der Zink-Luft-Batterie ist schon seit Ende WW2 gut bekannt, kommt aber interessanterweise bislang nur als Primärzelle zur kommerziellen Anwendung bei Batterien für Hörgeräte. In neuerer Zeit erfreut es sich aber eines zunehmenden Interesses, wohl besonders aufgrund der extrem hohen Energiedichte und somit im Hinblick auf Elektromobilität. Die mögliche Eignung als stationäre Anwendung zur Langzeitspeicherung alternativ erzeugter Energie ist vielleicht aus marktpolitischen Gründen nicht sonderlich erwünscht ;)

Dennoch gibt es auch in diesem Bereich Forschung, da wäre insbesondere das Großprojekt SFERA zu nennen, bei dem als ein Teilprojekt (Solzinc) und im Rahmen einer Kooperation von Prof. Aldo Steinfeld von der ETH Zürich und dem Weizmann Institut in Israel versucht wird, hohe Temperaturen mittels einer großen Anzahl von Solarspiegeln, welche auf die Spitze eines Turmes fokussiert sind, zu erzeugen und in einer speziellen Brennkammer und unter Kohlenstoffzufuhr das Zinkoxid wieder zu reduzieren.

Es gibt einige Firmen, die versuchen eine Zink-Luft-Batterie als Akku auszulegen und dabei eine möglichst hohe Zyklenanzahl zu erreichen. Zu nennen wären dabei u.a. Leo Motors Inc., Zinc Air Inc., Revolt, Powerzinc und EOS Energy Storage. Insbesondere letztere scheinen dabei recht innovativ zu sein und auch Langzeitspeicherung mit anzupeilen.

Was die Anwendung als Brennstoffzelle angeht, so scheint hier besonders John Cooper vom Lawrence Livermore National Laboratory federführend zu sein, inzwischen ist er wohl dabei, seine Entwicklung zusammen mit ZincAir Inc. zu kommerzialisieren.



Wünschenswert wäre eine saisonale Speicherung (einer großen Energiemenge) von Sommer zu Winter. Es wird u.a. Gegenstand des Projektes sein, herauszufinden, ob dies in einem ökonomisch vertretbaren Rahmen möglich ist. Zumindest eine Speicherung von einigen Tagen oder Wochen sollte dagegen relativ problemlos machbar sein.

Desweiteren gilt es festzustellen, welcher Wirkungsgrad erreicht werden kann bzw. diesen zu verbessern. Dabei gibt es vierschiedene Ansätze für Optimierungen, sowohl auf Seiten der ZAC, als auch auf Seiten des ZnO-Recyclers. Bei letzterem ist besonders die Frage des angewendeten Verfahrens entscheidend bzw. bietet noch Raum für weitere innovative Ansätze, man muss halt irgendwie den Sauerstoff aus dem ZnO rausbekommen, z.B. mittels eines einfachen elektrogalvanischen Verfahrens und unter Zuführung der zu speichernden Energie (z.B. überschüssige Photovoltaik-Energie im Sommer).

Anwendungen

  • stationär, als Langzeitspeicher für vorzugsweise Solar-Strom bzw. sonstige alternative Energien. Solange die Primärenergie kostenlos verfügbar ist, ist die Frage nach dem Wirkungsgrad zweitrangig.
  • Elektro-Mobilität. Diese Art der Anwendung könnte ev. noch interessant sein für die Elektro-Variante des OSE-Car Projekts.


Nebenaspekte / Überlegungen / Ausblick

Die Komponenten sind einfach zu beschaffen und die Technologie ist recht gut überschaubbar und handhabbar, auch im Hinblick auf Weiterentwicklungen und auf die Ausgangsmaterialien bzw. Rohstoffe.Man braucht nicht viele High-Tech-Komponenten. Einzige Ausnahme dabei ist die Gasdiffusions-Elektrode aus Kohlenstoff. Hier kann wäre eine eigene Entwicklung deutlich kostensenkend. Oder man entwickelt einfachere Varianten, (z.B. gepresste Aktivkohle) und versucht dazu ein paar Eckwerte zu ermitteln um einzuschätzen, ob sich diese in einem sinnvollen ökonomischen Rahmen anwenden lassen.

Darstellung einer

Als erster Milestone soll eine einfache Zink-Luft-Batterie nachgebaut werden, die in etwa einer handelsüblichen Knopfzelle entspricht. Dazu wird zunächst ein einfaches Testsystem entwickelt, welches es ermöglicht, einzelne Komponenten auszutauschen und so die detaillierte Zusammensetzung zu ermitteln. Ein besonderer Schwerpunkt liegt dabei auf der Entwicklung der Kathode als Gasdiffusions-Elektrode (GDE bzw. GDL = Gas Difusion Layer). GDLs gibt es auch zu kaufen, da sie bei einigen Brennstoffzellentypen gebräuchlich sind, aber die Preise dafür sind enorm hoch, so das es sich lohnen könnte, hier etwas eigenes zu entwickeln.

Die

auch: Gas- oder Luft-Kathode



Die

Die Zinkanode kann aus Zinkplatten bestehen oder auch aus feinem Zinkpulver, zwecks größerer Oberfläche. beides wird z.B. in Batterien eingesetzt. Bei Brennstoffzellen kommen auch sog. Zink-Pellets von ca. 1mm Körnung zum Einsatz.

Der

Zunächst soll eine einfache Zelle als Testsystem für Gaskathoden entwickelt werden. Diese Zelle verfügt über keinerlei Zuführungen und Ableitungen für Zink, Elektrolyt und Luft sondern wird manuell befüllt.

Das - Messung der Kapazität und Entlade-Charakteristik

Ergänzend zum Testsystem wird auch ein Mess-System benötigt, mit welchem sich die Kapazität genau bestimmen lässt und z.B. Entladungskurven aufzeichnen lassen.



Der

Experimenteller Prototyp mit Elektrolyt-Zirkulation



Der

Das beim Entladen der Zelle entstandene Zinkoxid (ZnO) muss wieder recycelt werden zu Zink, um den Kreislauf zu schliessen.

Andere Designs

Kompakt-Akku

Das ist ein etwas anderer Ansatz, bei dem es um einen wiederaufladbaren Akku geht. Dazu ein Experiment zur Umwandlung von Zinkoxid in Zink durch aufladen.

In diesem Experiment wurde ZinkOxid durch aufladen zu Zink umgewandelt. Dabei wurde die Kathode aufrecht und somit etwa im 90° Winkel zur mit Zinkoxid gleichmässig bestreuten Bodenfläche (bzw. der Anode) angeordnet.

Optimal wäre hierbei natürlich eine horizontale Ausrichtung der Kathode parallel zur Zinkoxid-Schicht, weil sich dann der Zinkschwamm zwar großflächig bilden würde, aber eben nur eine geringe Schicht-dicke hätte. Insbesondere bei einem geschlossenen Kompakt-Akku ist die Menge an Zinkoxid ja konstant und vorher bekannt, man braucht also nur den Abstand darüber zur Kathode so auslegen, das er groß genug ist und keine Kurzschlüsse entstehen können.

Es gibt allerdings ein Problem: Durch die Umwandlung ZnO zu Zn und O2 wird Sauerstoff erzeugt, der wiederum in Blasen nach oben bubbelt. Können diese Blasen also nicht nach oben entweichen und bilden eine mehr oder minder geschlossene Schicht unter der Kathode, dann wird diese quasi isoliert und es kann keine Umwandlung mehr stattfinden. (Für den Entladungsprozess hingegen wäre es aber optimal, weil der Sauerstoff hier von oben kommt.)

Vielleicht wäre eine Art 45°-Geometrie eine Möglichkeit, man müsste mal ausprobieren, ob die Blasen dann nicht vielleicht schräg nach oben entweichen würden. Vielleicht müsste man an der Kathode rütteln ;) bzw. diese einer feinen Vibration aussetzen.

Anode und Kathode bestehen aus einem sehr engmaschigen Stahlgewebe.

siehe dazu auch das Eflose-Video: ()


Hier ein Entwurf von User Gschnack:

Diese Zelle ist bereits mit einer Zuführung und Ableitung für Elektrolyt ausgestattet. Sie besteht aus zwei gefrästen Plexiglas-Elementen, die eine Silikon-Dichtung aufweisen und von Klammern zusammengehalten werden bzw. zerlegbar sind. Als Gaskathode kommen hier kommerzielle Varianten von Quantumsphere und Electric Fuel zum Einsatz.


Bild 1: Fertige Einzelteile

Weitere Bilder von dieser Zelle und Erläuterungen dazu gibts hier:

Bislang ist die Stromausbeute bei dieser Zelle noch unbefriedigend gering und liegt deutlich unter den Erwartungswerten (vgl. theoretisches Maximum der , so dass wir hier noch einen systematischen Fehler od. Problem vermuten, welches wir durch Quervergleiche debuggen werden.

Organisatorisches

Entwickler-Team

Roadmap and Log

  • 30.07.2012 Projekt-Seite im Wiki erstellt
  • 17.08.2012 Seite für erstellt
  • 16.11.2012 Literatur- und Link-Sammlung, Referenzen zu externen Projekten erstellt
  • 08.01.2013 Seite für und eingerichtet

Aktueller Entwicklungs-Status

17.08.2012 Das Projekt befindet sich noch in der Planungs- und Evaluierungs-Phase. Als Einstieg wird zunächst eine einfache entwickelt, als proof-of-concept.

16.11.2012 Herstellung von , verschiedene Versuchsansätze

ToDo next

  • Seite f. Gaskathodenherstellung einrichten
  • Seite f. ZAC Testsystem einrichten
  • Rüttelsieb bauen, für Herstellung von größeren Mengen Carbonpulver zum testen
  • GDL-Herstellung: Test mit Hermanns Thermodruckpresse
  • Berechnung d. theoretisch maximal möglichen Energie ins Wiki einpflegen.
  • Vergleich kommerzieller Gaskathoden, Wertetabelle, Bilder, Herstellerinfos, etc.

Open Tasks

  • Herstellung von Gaskathode
  • Darstellung der ZAC
    • Einfache Zelle als Testsystem für Gaskathoden entwickeln
  • Darstellung des Recyclers
    • Herstellung von ZnO (Zinkoxid) für Recycling-Test
  • Wiki-Projektseite:
    • Bildmaterial, Grafiken, Skizzen
    • Ausführliche Beschreibung des Projekes:
      • Details zur Funktion und technischen Prinzipien
      • Details zum Konstruktions- und Herstellungsprozess
    • Problembehandlung: Wo klemmts gerade, was hindert besonders?
    • Entwurf, Planung, Design
    • Entwicklung und Konstruktion
    • Prototyp testen, Meßdaten, Optimierung
    • Bill of Materials
    • Dokumentation
    • Verbreitung, User-Gallerie

Spenden



  • - persönliche Nachricht
  • - Diskussion

Literatur und Links

Presse

Referenz Beschreibung
Erste öffentliche Vorstellung der ZAC+ auf der Makerfaire 2013 in Hannover


+ General Reviews General Reviews


Report this page


CC 2019 open hardware observatory
|
  • Impressum
  • |
  • Legal